
Dynamic Adaptive Virtual Core Mapping
to Improve Power, Energy, and

Performance in Multi-socket Multicores

Chang Bae, Lei Xia, Peter Dinda, John Lange

Prescience Lab, Dept. of EECS, Northwestern Univ.
Dept. of CS, Univ. of Pittsburgh

Virtual cores mapping problem in
NUMA architecture

Parallel Workload
using shared memory

NUMA architecture

with SMPs

Virtual Machine Monitor

mapping Virtual Coresmapping Virtual Cores

PerformancePerformance

EnergyEnergy

PowerPower

objective objective

1/31

Contribution of the work

 Identify virtual core optimization opportunity

 With two virtual core (vcore) mappings

 Trade-offs in power, energy, and performance

2/31

Contribution of the work

 Identify virtual core optimization opportunity

 A new HW assisted SW detection mechanism

 Detects a new set of metrics

 Observes shared memory reference behaviors

3/31

Contribution of the work

 Identify virtual core optimization opportunity

 A new HW assisted SW detection mechanism

 Design, implementation, and evaluation of
adaptive system

 Incorporates the proposed control algorithm

 Results in

 Boosting performance up to 66%

 Minimizing energy up to 31%

 Minimizing average power up to 17%

 With <0.05% overhead

4/31

Outline

 Opportunities in virtual core (vcore) mapping

 Metrics and measurement

 System

 Results

 Conclusion

5/31

Outline

 Opportunities in vcore mapping

 Virtualized multi-core processors

 Trade-offs in energy, power, and performance

 Metrics and measurement

 System

 Results

 Conclusion

5/31

NUMA architecture with SMPs

Socket 0 Socket 1

Physical

core

Logical

core

(HW thread)

6/31

Virtualized multi-core processors

Virtual

core

(vcore)

Virtual machine
Flattening multicore topology

Interleaved mapping
7/31

Virtualized multi-core processors

Virtual machine
vcore mapping varies

Local mapping
7/31

vcore mapping strategy

 Local mapping

 Aggregating vcores locations within a socket

 Interleaved mapping

 Spreading vcores across multiple sockets

8/31

vcore mapping trade-offs

Local Interleaved

Cache contention Worse Better

Cache coherency cost Better Worse

DRAM access time Better Worse

Power Better Worse

9/31

Palacios VMM

 OS-independent embeddable virtual machine
monitor

 Open source and freely available
 Virtualization layer for multiple OSs (Linux and Kitten)

 Successfully used on supercomputers, clusters (Infiniband
and Ethernet), and servers

http://www.v3vee.org/palacios
10/31

Application benchmarks

 SPEC OMP 2001[1]

 PARSEC 2.1[2]

 Widely used and representative workloads

 This talk focuses on benchmarks

 with the greatest variations in results

[1] SPEC CPU Benchmark Suites

 www.spec.org/omp

[2] PARSEC Benchmark Suite

 parsec.cs.princeton.edu

11/31

Optimization opportunities in
vcore mapping for various objectives

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
a

ti
o

 o
f

in
te

rl
e
a
v
e
d
 o

v
e

r
lo

c
a
l

Execution time
Energy consumption
Average power

Local
better

Inter.
better

12/31

Outline

 Opportunities in vcore mapping

 Metrics and measurement

 Selection of metrics; about the metrics

 Measurement mechanism

 System

 Results

 Conclusion

13/31

 Architectural analysis

 Captures shared memory traffic

 Measurable in a VMM

 Page granularity

 Minimally correlated set

 Correlation of each pair of metrics

 Drop metrics with high correlation

Considerations in selecting
new metrics

Technique works on all

current processors; Future

chips will provide PMU

measurement of off-chip

traffic which this work can

also leverage

14/31

Selected metrics

 Pages with memory load from all vcores

 Average page access rate per memory or write op

 Pages with memory store from all vcores

 Average page write rate per memory or write op

 Degree of read or write sharing

 Shared page access ratio per memory or write op

 Degree of write sharing

 Shared page write ratio per memory or write op

15/31

Flow of measurement mechanism

In each vcore,

(1) Hardware

triggers the

interval after a

specified number

of memory ops or

write ops

VM entry

VM exit (PMU interrupt)

Scan PTE

vcore0

vcore1

vcoren-1

Aggregator

Scanning interval Aggregation

idle

Enable PTE scan Disable PTE scan
timeline

16/31

Flow of measurement mechanism

In each vcore,

(1) Hardware

triggers the

interval after a

specified number

of memory ops or

write ops

(2) VMM scans

page table to

find page access

or page writes

generating

bitmap(s)

VM entry

VM exit (PMU interrupt)

Scan PTE

vcore0

vcore1

vcoren-1

Aggregator

Scanning interval Aggregation

idle

Enable PTE scan Disable PTE scan
timeline

16/31

Flow of measurement mechanism

(3) Aggregator collects bitmaps across

vcores, and computes the metrics

In each vcore,

(1) Hardware

triggers the

interval after a

specified number

of memory ops or

write ops

(2) VMM scans

page table to

find page access

or page writes

generating

bitmap(s)

VM entry

VM exit (PMU interrupt)

Scan PTE

vcore0

vcore1

vcoren-1

Aggregator

Scanning interval Aggregation

idle

Enable PTE scan Disable PTE scan
timeline

16/31

Outline

 Opportunities in vcore mapping

 Metrics and measurement

 System

 Overview

 vcore migration mechanism

 vcore mapping policy

 Results

 Conclusion

17/31

System overview

thread0 thread1 Threadn-1

thread/vcore mapping

Guest/workload

Guest

level

Mapper
(user level)

Aggregator

vcore/core mapping

Kernel

level

Palacios
vcore0 vcore1 vcoren-1

PMU overflow
interrupts Machine

readtsc

core0 core1 corek-1

pmu pmu pmu tsc

corek

Socket0 Socketj-1 18/31

Virtual core migration mechanism

vcore/core mapping

vcore0 vcore1

Mapper
(user level)

core0 core1 corek

Steps in the request:

1) Forces all vcores to exit

2) Rebinds host kernel

threads, with virtualization

states to the new locations

3) Synchronizes threads

and reenters the guest

vcore mapping in Palacios is changed only on

explicit request(s) from Mapper

Kernel

level

User

level

19/31

Mapper finds vcore mapping
with controlling overheads

MapperMapper

(user-level)

Aggregator

readtsc

Host OS

vcore/core

mapping

Policy Mechanism

•The 8 new metrics

•vcore utilization ratio

•Time information

Metrics

20/31

Mapper finds vcore mapping
with controlling overheads

Perf. model

Power model
•The 8 new metrics

•vcore utilization ratio

•Time information Measured overhead

Energy model

MapperMapper

(user-level)

Aggregator

readtsc

Host OS

vcore/core

mapping

Policy Mechanism

Metrics

20/31

Mapper finds vcore mapping
with controlling overheads

Control algorithm
for vcore mapping

and overhead

Perf. model

Power model
•The 8 new metrics

•vcore utilization ratio

•Time information Measured overhead

Energy model

MapperMapper

(user-level)

Aggregator

readtsc

Host OS

vcore/core

mapping

Policy Mechanism

Metrics

20/31

Mapper finds vcore mapping
with controlling overheads

Details on the models incorporated in adaptive

control algorithm can be found in the paper

Control algorithm
for vcore mapping

and overhead

Perf. model

Power model
•The 8 new metrics

•vcore utilization ratio

•Time information Measured overhead

Energy model

MapperMapper

(user-level)

Aggregator

readtsc

Host OS

vcore/core

mapping

Policy Mechanism

Metrics

20/31

Outline

 Opportunities in vcore mapping

 Metrics and measurement

 System

 Results

 Setup

 Experimental results

 Conclusion

21/31

Experimental setup

 Workload ς SPEC OMP 2001, PARSEC 2.1

 Software
 Guest OS ς Linux ver2.6.30

 VMM ς Palacios ver1.3

 Host OS ς Linux ver2.6.38

 Hardware
 2 Processor sockets (NUMA)

 CPU ς Intel® XeonTM E5620,

 with 4 cores (8 HW threads) x 2

 Memory ς 4GB with 1066 MHz (DDR3) x 2

 22/31

Measurement for the results

 Execution time ς time stamps at the start/end of execution

 Energy ς power meter outputs energy information

 Average power ς from energy by execution time.

Test machine
Logger
machine

Serial port

connection
PDU Power meter

23/31

0

10

20

30

40

E
n

e
rg

y
 (

W
h

)

Local

Interleaved

Adaptive

Adaptive always chooses best
mapping for energyenergy

24/31

Reduced

energy

up to 31%

0

10

20

30

40

E
n

e
rg

y
 (

W
h

)

Local

Interleaved

Adaptive

Adaptive always chooses best
mapping for energyenergy

24/31

Adaptive scheme selects

local mapping dominantly

0

10

20

30

40

E
n

e
rg

y
 (

W
h

)

Local

Interleaved

Adaptive

Adaptive always chooses best
mapping for energyenergy

24/31

Adaptive scheme selects

interleaved mapping

dominantly

0

4E+11

8E+11

1.2E+12

1.6E+12

2E+12

T
im

e
 s

ta
m

p
 c

o
u

n
t

 (
re

fe
re

n
ce

 c
lo

ck
)

Local

Interleaved

Adaptive

Adapt. always chooses the best
mapping for performanceperformance

25/31

Increased

performance

up to 66%

120

140

160

180

200

220

P
o

w
e

r
(w

a
tt

)

Local

Interleaved

Adaptive

Adaptive always chooses best
mapping for powerpower

26/31

Reduced

power

up to 17%

Benchmark
PT scanning overhead

(ms)
vcores mapping cost

(ms)

canneal 1.51 5.24

streamcluster 0.78 5.27

equake 0.82 5.25

swim 2.34 5.08

raytrace 0.39 5.24

mgrid 0.61 5.27

fluidanimate 0.58 5.25

art 1.30 5.30

apsi 4.61 5.27

Overheads in measurement and
remapping are small

27/31

0

1

2

3

4

5

6

7

8

9

N
u

m
b

e
r

o
f

re
m

a
p

p
in

g

in
 o

n
e

 e
x

e
c
u

ti
o

n

Performance objective

Energy objective

Power objective

Remapping cost is controlled

Less than

0.05%

of runtime

raytrace, swim, and mgrid run for >10 mins

Others run for 3—5 mins
28/31

Conclusion

 Opportunity for optimizing the selected
objective by selecting one of two vcore mappings

 Detection framework for capturing shared
memory reference behavior with a set of new
metrics

 Dynamic adaptive system for selecting the
best mapping

29/31

Future work

 Developing formulations for generic vcore
mapping, scheduling, and page mapping

 Extending HW assisted SW monitor to capture
other sets of new metrics

 Working on design, implementation, and
evaluation of adaptive system incorporating
NUMA optimization in a VMM

30/31

Questions?

 Questions and Answers

 Contact information

 chang.bae@eecs.northwestern.edu

 http://www.changbae.org

 Project website

 http://v3vee.org

31/31

