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Contribution of the work 

 

 

 Identify virtual core optimization opportunity  

 With two virtual core (vcore) mappings 

 Trade-offs in power, energy, and performance 
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Contribution of the work 

 Identify virtual core optimization opportunity  

 

 A new HW assisted SW detection mechanism  

 Detects a new set of metrics  

 Observes shared memory reference behaviors 
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Contribution of the work 

 Identify virtual core optimization opportunity  

 A new HW assisted SW detection mechanism  

 Design, implementation, and evaluation of 
adaptive system  

 Incorporates the proposed control algorithm 

 Results in 

 Boosting performance up to 66% 

 Minimizing energy up to 31% 

 Minimizing average power up to 17% 

 With <0.05% overhead 
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Outline 

 Opportunities in virtual core (vcore) mapping 

 Metrics and measurement 

 System 

 Results  

 Conclusion 
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NUMA architecture with SMPs 
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Virtualized multi-core processors 

Virtual 

core 

(vcore) 

Virtual machine 
Flattening multicore topology 

Interleaved mapping 
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Virtualized multi-core processors 

Virtual machine 
vcore mapping varies 

Local mapping 
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vcore mapping strategy 

 Local mapping 

 Aggregating vcores locations within a socket 

 

 

 Interleaved mapping 

 Spreading vcores across multiple sockets 
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vcore mapping trade-offs 

Local Interleaved 

Cache contention Worse Better 

Cache coherency cost Better Worse 

DRAM access time Better Worse 

Power Better Worse 
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Palacios VMM 

 OS-independent embeddable virtual machine 
monitor 
 

 Open source and freely available 
 Virtualization layer for  multiple OSs (Linux and Kitten) 
 

 Successfully used on supercomputers, clusters (Infiniband 
and Ethernet), and servers 

 

http://www.v3vee.org/palacios 
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Application benchmarks 

 SPEC OMP 2001[1] 

 PARSEC 2.1[2] 

 

 Widely used and representative workloads 

 This talk focuses on benchmarks 

    with the greatest variations in results 

[1] SPEC CPU Benchmark Suites 

      www.spec.org/omp 

[2] PARSEC Benchmark Suite 

      parsec.cs.princeton.edu 
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Optimization opportunities in 
vcore mapping for various objectives  
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Outline 

 Opportunities in vcore mapping 

 Metrics and measurement 

 Selection of metrics; about the metrics 

 Measurement mechanism 

 System 

 Results  

 Conclusion 
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 Architectural analysis 

 Captures shared memory traffic 

 

 Measurable in a VMM 

 Page granularity  

 

 Minimally correlated set 

 Correlation of each pair of metrics 

 Drop metrics with high correlation 

 

Considerations in selecting  
new metrics 

Technique works  on all 

current processors; Future 

chips will provide PMU 

measurement of off-chip 

traffic which this work can 

also leverage 
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Selected metrics 

 Pages with memory load from all vcores 

 Average page access rate per memory or write op 
 

 Pages with memory store from all vcores 

 Average page write rate per memory or write op 
 

 Degree of read or write sharing 

 Shared page access ratio per memory or write op 
 

 Degree of write sharing 

 Shared page write ratio per memory or write op 
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Flow of measurement mechanism 

In each vcore, 

(1) Hardware 
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Flow of measurement mechanism 

(3) Aggregator collects bitmaps across 

vcores, and computes the metrics 
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Outline 

 Opportunities in vcore mapping 

 Metrics and measurement 

 System 

 Overview  

 vcore migration mechanism 

 vcore mapping policy 

 Results  

 Conclusion 

17/31 



System overview 
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Virtual core migration mechanism 

vcore/core mapping 

vcore0 vcore1 

Mapper 
(user level) 

core0 core1 corek 

Steps in the request: 
 

1) Forces all vcores to exit 
 

2) Rebinds host kernel 

threads, with virtualization 

states to the new locations 
 

3) Synchronizes threads 

and reenters the guest  
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level 

User 
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Mapper finds vcore mapping  
with controlling overheads 
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Mapper finds vcore mapping  
with controlling overheads 

Details on the models incorporated in adaptive 

control algorithm can be found in the paper 
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 Experimental results 
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Experimental setup 

 Workload ς SPEC OMP 2001, PARSEC 2.1 

 Software 
 Guest OS ς Linux ver2.6.30 

 VMM ς Palacios ver1.3 

 Host OS ς Linux ver2.6.38 

 Hardware 
 2 Processor sockets (NUMA) 

 CPU ς Intel® XeonTM E5620,  

            with 4 cores (8 HW threads) x 2 

 Memory ς 4GB  with 1066 MHz (DDR3) x 2  
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Measurement for the results 

 Execution time ς time stamps at the start/end of execution 
 

 Energy ς power meter outputs energy information  
 

 Average power ς from energy by execution time. 

Test machine 
Logger  
machine 

Serial port 

connection 
PDU Power meter 
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Adaptive scheme selects 

local mapping dominantly 
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Benchmark 
PT scanning overhead 

(ms) 
vcores mapping cost 

(ms) 

canneal 1.51 5.24 

streamcluster 0.78 5.27 

equake 0.82 5.25 

swim 2.34 5.08 

raytrace 0.39 5.24 

mgrid 0.61 5.27 

fluidanimate 0.58 5.25 

art 1.30 5.30 

apsi 4.61 5.27 

Overheads in measurement and 
remapping are small 

27/31 



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

N
u

m
b

e
r 

o
f 

re
m

a
p

p
in

g
 

in
 o

n
e

 e
x

e
c
u

ti
o

n
 

Performance objective 

Energy objective 

Power objective 

Remapping cost is controlled 

Less than 

0.05% 

of runtime 

raytrace, swim, and mgrid run for >10 mins 

Others run for 3—5 mins 
28/31 



Conclusion 

 Opportunity for optimizing the selected 
objective by selecting one of two vcore mappings 
 

 Detection framework for capturing shared 
memory reference behavior with a set of new 
metrics 
 

 Dynamic adaptive system for selecting the 
best mapping 
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Future work 

 Developing formulations for generic vcore 
mapping, scheduling, and page mapping 

 

 Extending HW assisted SW monitor to capture 
other sets of new metrics 

 

 Working on design, implementation, and 
evaluation of adaptive system incorporating 
NUMA optimization in a VMM 
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Questions? 

 Questions and Answers 

 

 Contact information 

 chang.bae@eecs.northwestern.edu 

 http://www.changbae.org 
 

 Project website 

 http://v3vee.org 
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